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Adaptive-resolution molecular dynamics �MD� schemes allow for changing the number of degrees of free-
dom on the fly and preserve the free exchange of particles between regions of different resolution. There are
two main alternatives on how to design the algorithm to switch resolution using auxiliary “switching” func-
tions: force based and potential energy based approaches. In this work we show that, in the framework of
classical MD, the latter presents fundamental conceptual problems which make unlikely, if not impossible, the
derivation of a robust algorithm based on the potential energy.
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I. INTRODUCTION

Multiscale modeling and simulation in condensed matter
is a field of continuous expansion as the basic properties of
an increasing number of systems, relevant to current re-
search, are discovered to strongly depend on a delicate
scales’ interplay. The massive progress of computer technol-
ogy together with the parallel development of novel power-
ful simulation methods has strongly contributed to this ex-
pansion so that by now detailed sequential studies from the
electronic scale to the mesoscopic and continuum are rou-
tinely performed. However, among all these methods of a
particular interest are those which deal in a more direct way
with the multiscale idea. Typically these schemes are based
on a single computational approach which links two or more
interconnected scales. One example is the technique used to
study edge dislocation in metals, where local chemistry af-
fects large scale material properties �1�, or the crack of ma-
terials where the rupture of a local interatomic bond is then
propagated to the larger scale and again back to the next
interatomic bond and so on �2,3�; in this case quantum based
methods are interfaced with classical atomistic and con-
tinuum models within a single computational scheme. A fur-
ther example is the quantum mechanics/molecular mechanics
scheme �4�. This is mainly used for soft matter systems
where a fixed region of space requires quantum resolution
and the external part is treated at a classical atomistic level.
Examples are solvation of large molecules where the chem-
istry happens locally �quantum region� while the statistical
effect of the fluctuating environment �solvent� far from the
molecules can be treated in a rather efficient way at a clas-
sical level. In the same fashion there are several more ex-
amples �see, e.g., Refs. �5,6��. All of these anyway are char-
acterized by a nontrivial limitation, i.e., the region of
resolution is fixed and free exchanges of particles with the
other regions are not allowed. While this may not be a cru-
cial point for a system involving rigid structures, certainly it
is a very strong limitation for highly fluctuating systems. The
natural next step to overcome this problem is the design of
novel adaptive resolution methods which indeed allow for

the exchange of particles among regions of different resolu-
tion. In general, in such a scheme a molecule moving from a
high resolution region to a lower one would gradually lose
some degrees of freedom until the lower resolution is
reached but yet the statistical equilibrium among the two
different regions is kept at any instant. Recently some
schemes based on this idea have been presented in the litera-
ture �7–9�. They differ in the way the different resolutions
are coupled in the MD algorithm. The coupling can be
achieved either through the potential, slowly passing from an
atomistic to a corresponding coarse grained potential �and
vice versa�, or through the forces; that is, slowly passing
from a force derived from an atomistic potential to a force
derived from the corresponding coarse grained potential �and
vice versa�. The passage from the atomistic to the coarse
grained is controlled by a smooth “switching function,”
which is used to interpolate the two quantities. For the force
based scheme it is not possible to define a potential energy
from the interpolation formula, but on the basis of physical
arguments this problem can be circumvented �10,11� as will
be briefly discussed later on; for the potential based scheme
obviously the definition of potential energy is the central
point. In this sense, the potential based scheme would seem
more appealing; however, the subject of this work is to show
that on the basis of a mathematically rigorous derivation, this
scheme is not applicable. Here we construct the most general
adaptive scheme based on the potential and derive the nec-
essary conditions by which one can obtain the switching
functions. As an outcome we show that the resulting set of
partial differential equations has got boundary conditions
such that the system is overdetermined and thus solutions
may exist only for trivial cases. Moreover, even in case a
solution may exist, further technical problems, due to the
nature of the differential equation, arise which make this
scheme rather unpractical. The paper is organized as follows.
In the next section a short overview of the force based
method is presented. It summarizes its crucial point and enu-
merates the latest applications. Next the potential based
scheme is presented with its general features. Finally, a gen-
eral interpolation scheme is used to derive the equation that
defines the switching functions. The paper is closed by the
Discussion and Conclusions.*dellsite@mpip-mainz.mpg.de

PHYSICAL REVIEW E 76, 047701 �2007�

1539-3755/2007/76�4�/047701�4� ©2007 The American Physical Society047701-1

http://dx.doi.org/10.1103/PhysRevE.76.047701


II. FORCE BASED SCHEME: A SHORT OVERVIEW
OF THE ADAPTIVE RESOLUTION

SIMULATION METHOD

According to the previous discussion, a method which has
turned out to be rather robust is the adaptive resolution simu-
lation �AdResS� �7,8�. It is based on coupling the atomistic
and the mesoscale through an interpolation formula for the
atomistic and coarse grained force. At this point it should be
mentioned that this approach, as well as the calculations per-
formed in this work, are valid, so far, under the assumption
of pair interactions; however, due to the large use of pair
potentials in atomistic simulation, the AdResS method, as
well as the result of this work, is nevertheless of interest to
the simulation community. Briefly, the space is divided in
two regions, as for example, in Fig. 1 a high resolution re-
gion, let us call it B where the molecule has atomistic reso-
lution and a region A where the molecule is coarse grained.
In between there is a region � where a smooth transition
from one resolution to another takes place via a continuous
“switching” function w�x�, such that w�x1�=0;w�x2�=1. The
interpolation formula then reads �7�

F�� = w�X��w�X��F��
atom + �1 − w�X��w�X���F��

cm , �1�

where � and � label two distinct molecules, F��
atom is derived

by the atomistic potential where each atom of molecule �
interacts with each atom of molecule �, and F��

cm is obtained
from an effective pair potential between the centers of mass
of the coarse grained molecules; the latter is derived on the
basis of the reference all-atom system. Equation �1� does not
allow one to define a potential in the switching region
�10,11�; however, in this scheme such a definition is not re-
quired. Actually, all one needs to know is based on the fol-
lowing arguments: the change of resolution can be inter-
preted in terms of similarity with a geometrically induced
first order phase transition with an associated latent heat

�10�. This interpretation justifies the use of a thermostat, dur-
ing an MD simulation, in the switching region � so that the
physical equilibrium is kept. Numerical calculations and ap-
plications to rather different systems have shown that indeed
this approach is satisfactory �see the applications to a liquid
of tetrahedral molecules �8�, a polymer solvated in it �12�,
and liquid water �13��. The crucial point of this scheme is
that Eq. �1� is only an ansatz based on satisfying the third
Newton law and on numerical simplicity; however, the nu-
merical results show that the method indeed gives the correct
answers when compared with all atom simulations and its
physical interpretation is consistent with the basic principles
of equilibrium in statistical mechanics �11�. However, one
may naturally ask whether the same or a similar interpolation
scheme can be applied to potentials and thus preserve the
energy conservation as suggested by Ensing et al. �9�. In the
following section we show that to build an interpolation
scheme similar to Eq. �1� but applied to potentials instead of
forces it is not possible.

III. GENERIC SCHEME BASED ON THE POTENTIALS

Let us define two generic switching functions: f�X� ,X��
continuous and differentiable in �, and outside � defined
such that

f�X�,X�� = 0, X� � x2 and X� � x2,

f�X�,X�� = 1, X� or X� � x1, �2�

and g�X� ,X�� continuous and differentiable in � and outside
� defined such that

g�X�,X�� = 0, X� � x1 or X� � x1,

g�X�,X�� = 1, X� and X� � x2. �3�

Here X� and X� are the coordinates along the x̂ direction, as
represented in Fig. 1, of the center of mass, respectively, of
the generic molecule � and �. A generalization of Eq. �1� to
the potentials using these two generic switching functions
f�x� and g�x� writes

Ucoupling = f�X�,X��Ucg + g�X�,X��Uatom, �4�

where Ucoupling is the potential coupling the two resolutions,
Ucg=Ucg�R� ,R�� is the coarse grained potential and R� ,R�

are the coordinates of the centers of mass; Uatom
=Uatom�r�i ,r�j� is the atomistic potential between atom i of
molecule � and atom j of molecule �. Equation �4� couples
the different scales similarly to what is done by Eq. �1� but
with the hypothetical advantage of automatically conserving
energy. At this point to do molecular dynamics, we need to
derive the forces. The following situations are clear: if the
molecules are located both in region A �coarse grained
force�, or both in region B �atomistic force�, or one in A and
one in B �coarse grained force�, or one in � and one in A
�coarse grained force�. However, once the molecules are both
in � or one in � and one in B, the force must be derived by
the whole expression of Eq. �4�. Let us calculate the coupling
force acting on R� and R�. One should keep in mind that

A ∆ B

w(x)

xx1 2

FIG. 1. �Color online� Schematic picture of the partitioning of
space in high resolution �atomistic� region B, low resolution �coarse
grained� region A, and transition region �. w�x� is the switching
function which allows a smooth transition from a coarse grained to
an atomistic resolution and vice versa. Below the pictorial represen-
tation of a tetrahedron molecule that changes resolution according
to the position in space is presented. This representation is taken
from �7�.
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R�=�i=1,nr�i /n and, equivalently, R�=�i=1,n ,r�i /n, where
for simplicity the molecules were chosen to have both n
identical atoms. It follows that the force acting on the center
of mass of molecule � is

FR�

coupling = −
�Ucoupling

�R�

, �5�

which in explicit form writes

FR�

coupling = − f�X�,X��
�Ucg

�R�

− g�X�,X��
�Uatom

�R�

− Ucg
�f�X�,X��

�R�

− Uatom
�g�X�,X��

�R�

, �6�

taking into account that
�R�

�X�
=1, Eq. �6� can be rewritten as

FR�

coupling = f�X�,X��Fcg + g�X�,X��Fcm
atom + Fdrift, �7�

where

Fdrift = − Ucg
�f�X�,X��

�X�

− Uatom
�g�X�,X��

�X�

�8�

is a spurious force with no physical meaning, which emerges
as a consequence of the presence of the switching functions.
In fact in this case the center of mass of a molecule receives
an additional acceleration in the switching region, due to the
switching function, which should not be there because from
the physical point of view the molecules in any resolution
regime must be equivalent and the switching function is not
a physical quantity. The effect that it will have is of drifting
particles along the x̂ direction. At this point, the condition to
have a well based physical treatment of the particles without
artifacts in the dynamics due to the introduction of the
switching functions is to recover from Eq. �7�, in a math-
ematical way, the force coupling scheme involving only the
atomistic and coarse grained forces. This will allow us to
determine f�X� ,X�� and g�X� ,X�� for which the energy is
conserved and to have an algorithm that, in principle, works
rather well as shown by the AdResS scheme. The physical
condition to do so, as implicitly suggested by Ensing et al., is

Fdrift = 0, �9�

and in this case, translated into the mathematical condition,
becomes

Ucg
�f�X�,X��

�X�

+ Uatom
�g�X�,X��

�X�

= 0. �10�

To make the problem mathematically correct one should fol-
low the same procedure for the force acting on R� so that the
final conditions read

Ucg
�f�X�,X��

�X�

+ Uatom
�g�X�,X��

�X�

= 0,

Ucg
�f�X�,X��

�X�

+ Uatom
�g�X�,X��

�X�

= 0. �11�

This is a system of first order partial differential equations
where g and f are the unknown functions in � and X� ,X� are

the variables �14�. Without going into the details of the math-
ematical properties of such a system, a simple and yet pow-
erful observation clearly shows that a solution may exist only
in very special cases but certainly not in general. This obser-
vation is rather simple; a differential equation or a system of
differential equations of the first order has got solutions
which are uniquely identified by one boundary condition
�one for f and one for g in this case�. At this point if one goes
back to the definition of f and g given in Eqs. �2� and �3�, it
is easy to see that in order to have a valid switching function
with the correct limiting case at the boundary of �, there are
two boundary conditions for each function, associated to Eq.
�11�, to be satisfied as follows:

f�X�,X�� = 0, X� = x2 and X� = x2,

f�X�,X�� = 1, X� = x1 and X� = x1, �12�

and

g�X�,X�� = 0, X� = x1 and X� = x1,

g�X�,X�� = 1, X� = x2 and X� = x2. �13�

This means the system of equations is overdetermined and a
solution, in general, does not exist. Specifically, if the equa-
tions are solved using the condition in x1, it may or may not
exist a solution such that f in a certain point x2 is equal to
zero, and equivalently for g; of course the same argument is
valid if as a boundary condition is chosen that of x2. How-
ever, even in case a solution exists, there would be no control
on the switching region � as it is not possible to locate one
of the two boundaries a priori. This aspect makes this ap-
proach not convenient for any robust MD algorithm. A fur-
ther point that invalidates the potential approach is the fact
that, while ideally f and g should be a function solely of X, to
deal with a simple algorithm, Eq. �11� shows that indeed at
least one of the two functions should depend on all the de-
grees of freedom of the atomistic system, as in the equation
the atomistic potential depends on all such degrees of free-
dom. This may be even possible for simple systems, how-
ever, as the molecules become larger this approach becomes
highly unpractical. One may even think of a more general
scheme in the same fashion of what is proposed in Ref. �9�;
that is, to introduce an additional potential � such that the
coupling potential reads

Ucoupling = f�X�,X��Ucg + g�X�,X��Uatom + � , �14�

where � is equal to zero in A and B, in order to obtain Ucg
in A and Uatom in B and it is a certain regular function in �
such that

Fdrift =
��

�Xi
, i = �,�, ∀ X�,X� � � . �15�

In this way one obtains a more general expression for the
energy in the switching region and, regarding the forces, the
role of ��

�Xi
is that of removing the spurious force due to the

switching functions. At this point one must notice that Eq.
�15� is equivalent to Eq. �10� �or Eq. �11�� with the only
difference of the presence of ��

�Xi
on the right-hand side. The
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conclusions of this work do not change because the problem
of the boundary conditions of this differential equation re-
mains the same as for Eq. �10� �or Eq. �11��. In this case,
however, there is more flexibility and one can distinguish
two situations: �a� � is a known function and g and f are
unknown; �b� � is unknown and g and f are known. In case
�a� the conclusions drawn before do not change because we
still have two first order partial differential equations in g
and f and the overdetermination is not removed by the pres-
ence of the known term − ��

�Xi
on the right-hand side of Eq.

�11�. In case �b� we will have again a system of first order
partial differential equations where the unknown function is
� �Eq. �15�� and is characterized by two boundary condi-
tions, one in x1 and one in x2 �i.e., �=0�, thus the overde-
termination is shifted from f and g to �.

IV. CONCLUSIONS

We have shown that an adaptive resolution method based
on the ansatz of potential interpolation via switching func-
tions cannot be realized as the mathematical condition of
finding a suitable switching function it is likely to have no
solution or only trivial ones. It was already shown before that
this scheme leads to the violation of Newton third law
�10,11� for the special case f =1−g. The arguments presented

above add up to the previous one and further show that for
the most generic interpolation formula the switching func-
tions do not exist except for some special and trivial cases. In
general, for a numerical implementation, such a scheme
would not be feasible. This fact does not exclude the possi-
bility that the adaptive resolution can be achieved via other
approaches based on the potential energy. In fact, recently
Hyden et al. �15� have presented an alternative scheme for
adaptive resolution based on potentials. This scheme, rather
promising, can be applied also to the quantum-classical in-
terface. However, it does not make use of switching func-
tions and loses the numerical simplicity of the interpolation
formula together with its physical interpretation, which in-
stead is the nontrivial advantage of the force based method.
In conclusion, the development of adaptive resolution ap-
proaches is a field of rapidly growing interest; the intention
of this work is that of fixing some clear directions along
which one can or cannot move in order to develop more
sophisticated and yet numerically simple schemes.
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